LOCATION: Bangalore


Important Days

January 21, 2023 (Paper Submission Deadline)
February 13, 2023 (Notifications)
February 14, 2023 (Registration Open)
March 16, 2023 (Camera-ready Due)
May 01-04, 2023 (Conference Date)

Breakout and Networking Session

Date/Time: TBA


ICFEC 2023

The 7th IEEE International Conference on Fog and Edge Computing (ICFEC 2023) is a leading forum to disseminate and discuss research activities and results on a broad range of topics in the fields of fog and edge computing. ICFEC 2023 will take place in conjunction with The 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2023).

Fog and edge computing have received much attention by both the research community and the industry in recent years, and are today seen as an alternative to the utilization of cloud-based computational resources. Especially, this is the case in scenarios where large amounts of data are produced in distributed settings, e.g., in the Internet of Things (IoT), where data needs to be processed in (near) real time, or where suboptimal network connectivity hampers the upload of very large amounts of data to the cloud. Use cases for fog and edge computing range from smart factories over smart grids to autonomous vehicles, to name just some examples.

While tremendous progress has already been made in the research fields of fog and edge computing, there are still numerous challenges which need to be solved. New abstractions and extensions to current programming and storage models are necessary to allow developers to design novel applications that can benefit from massively distributed fog and edge systems. Addressing security, privacy, and trust is of paramount importance while managing the resources and context of mobile, transient and hardware-constrained resources. Fog and edge computing can also help to process very large amounts of data, both for batch processing and data streams. The integration of novel communication protocols and communication patterns with fog and edge computing also brings both new opportunities and unique challenges. Recently, the utilization of fog and edge resources in order to realize distributed machine learning in the form of federated learning has also gained much traction, since it allows to learn from local data without sharing raw data with any centralized entity.

Call for Papers

Download the PDF call for papers here

The conference seeks to attract high-quality contributions covering both theory and practice over systems research and emerging domain-specific applications related to next-generation distributed systems that use the edge and the fog. Some representative topics of interest include, but are not limited to:


  • Data centers and infrastructures for fog/edge computing
  • Mobility management in fog/edge computing
  • Federated learning and distributed machine learning in the fog and on the edge
  • 5G and fog/edge computing
  • Middleware and runtime systems for fog/edge infrastructures
  • Programming models for fog/edge computing
  • Storage and data management platforms for fog/edge
  • Scheduling and resource management for fog/edge infrastructures
  • Security, privacy, trust and provenance issues in fog/edge computing
  • Distributed consensus and blockchains at the edge and in the fog
  • Modelling and simulation of fog/edge environments
  • Performance monitoring and metering of fog/edge infrastructures
  • (Big) Data processing in the fog and at the edge
  • Energy-efficient fog/edge computing

Accepted Papers and Program

Papers accepted for the 2023 IEEE ICFEC have been published in the IEEE Xplore Digital Library

May 03, 2023

Session I: Data Management, Federated Learning and Offloading [3:30-5:30pm] Chair: Vasileios Karagiannis
Lifecycle Management of Federated Learning Artifacts in Industrial Applications
Thomas Hiessl, Safoura Rezapour Lakani, Michael Ungersboeck, Jana Kemnitz, Daniel Schall and Stefan Schulte
Data Sovereignty at the Edge of the Network
Vasileios Karagiannis, Astrid Al-Akrawi and Oliver Hödl
Fault Tolerant Edge Computing: Challenges and Opportunities
Maryam Pourreza and Priya Narasimhan
PLTO: Path Loss-Aware Task Offloading for Vehicular Cooperative Perception
Amr M. Zaki, Sara A. Elsayed, Khalid Elgazzar and Hossam S. Hassanein

May 04, 2023

Session II: Machine Learning at the Edge [10:30am-12:30pm] Chair: Sandip Chakraborty
Performance Characterization of using Quantization for DNN Inference on Edge Devices
Hyunho Ahn, Tian Chen, Nawras Alnaasan, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni and Dhabaleswar K. Panda
Object Detection Acceleration Method by Improving Execution Efficiency of Edge AI Device
Yoshikazu Watanabe, Yuki Kobayashi, Noboru Nakajima, Takashi Takenaka and Hiroyoshi Miyano
Fog Computing for Deep Learning with Pipelines
Antero Vainio, Akrit Mudvari, Diego Kiedanski, Sasu Tarkoma and Leandros Tassiulas
An Edge Deployment Framework to Scale AI in Industrial Applications
Jana Kemnitz, Axel Weissenfeld, Leopold Schoeffl, Andreas Stiftinger, Daniel Rechberger, Bernhard Prangl, Thomas Kaufmann, Thomas Hiessl, Stephanie Holly, Clemens Heistracher and Daniel Schall

Session III: Distributed Edge Computing [2:00- 3:30pm] Chair: Guillaume Pierre
Distributed Routing Algorithms for Concurrent Execution of Transactions in PCNs
Neeraj Sharma and Kalpesh Kapoor
Mobile Edge Slice Broker: Mobile Edge Slices Deployment in Multi-Cloud Environments
Samia Boutalbi, Nizar Kheir, Remous-Aris Koutsiamanis, Mario Südholt and Yann Dan Moussa
Scalable Transparent Access to 5G Edge Services
Josef Hammer and Hermann Hellwagner

All accepted papers will be published by IEEE Computer Society Press (EI-Index) and included in the IEEE Digital Library. For publication, each accepted paper is required to be registered by one of its authors, and at least one author is required to attend and present the paper at the conference for the paper to be included in the final technical program and the IEEE Digital Library.

Submission Instructions

ICFEC 2023

We invite original manuscripts that have neither been published elsewhere nor are under review at a different venue. Papers should follow the IEEE template for conference proceedings. Authors should submit papers, written in English, electronically in PDF format and may not exceed 8 letter-size pages in length, including all figures, tables, and references. All manuscripts will be reviewed and judged on originality, technical strength, significance, presentation, and relevance to the conference by at least three reviewers. Papers may be submitted online at https://easychair.org/conferences/?conf=icfec2023

Papers that are accepted for publication may be accepted as REGULAR paper (8 pages) or SHORT papers (5 pages), depending on the reviewer recommendations. Accepted papers will be included in the conference proceedings that will be published through the IEEE Computer Society Conference Publishing Services.


ICFEC 2023 Committees

General Chairs:
Program Chairs:
Steering Committee:
Publicity Chairs:
Program Committee:
Program Committee (continued):

Keynote Speakers & Panelists

Plenary Keynote Speakers

Dr. Deborah Agarwal

• Scientific Data Division Director, Lawrence Berkeley National Laboratory

• Senior Scientist, Lawrence Berkeley National Laboratory

• Research Affiliate, Berkeley Institute for Data Science, University of California, Berkeley

Dr. Deborah Agarwal is a Senior Scientist and Division Director for the Scientific Data Division, at Lawrence Berkeley National Laboratory (LBNL). The Scientific Data Division (SciData) transforms data-driven discovery and understanding through the development and application of novel data science methods, technologies, and infrastructures with scientific partners. Dr. Agarwal’s current research focuses on developing computational tools to enable scientists to organize and use Earth Science data to address challenges more effectively. She has worked on projects involving carbon flux, watershed understanding, tropical forests, soil carbon, carbon capture, cosmology, particle accelerators, data repositories, and satellite data. She is also active in efforts to broaden diversity in computing research and a member of the Computing Research Association Committee on Widening Participation.

Dr. Manish Gupta

• Director, Google Research India

Dr. Manish Gupta is the Director of Google Research India. He holds an additional appointment as Infosys Foundation Chair Professor at IIIT Bangalore. Previously, Manish has led VideoKen, a video technology startup, and the research centers for Xerox and IBM in India. As a Senior Manager at the IBM T.J. Watson Research Center in Yorktown Heights, New York, Manish led the team developing system software for the Blue Gene/L supercomputer. IBM was awarded a National Medal of Technology and Innovation for Blue Gene by US President Barack Obama in 2009. Manish holds a Ph.D. in Computer Science from the University of Illinois at Urbana Champaign. He has co-authored about 75 papers, with more than 7,000 citations in Google Scholar (and an h-index of 46), and has been granted 19 US patents. While at IBM, Manish received two Outstanding Technical Achievement Awards, an Outstanding Innovation Award and the Lou Gerstner Team Award for Client Excellence. Manish is a Fellow of ACM and the Indian National Academy of Engineering, and a recipient of a Distinguished Alumnus Award from IIT Delhi.

Dr. Bingsheng He

• Professor and Vice-Dean (Research), School of Computing, National University of Singapore

Dr. Bingsheng He is currently a Professor and Vice-Dean (Research) at School of Computing, National University of Singapore. Before that, he was a faculty member in Nanyang Technological University, Singapore (2010-2016), and held a research position in the System Research group of Microsoft Research Asia (2008-2010), where his major research was building high performance cloud computing systems for Microsoft. He got the Bachelor degree in Shanghai Jiao Tong University (1999-2003), and the Ph.D. degree in Hong Kong University of Science & Technology (2003-2008). His current research interests include cloud computing, database systems and high performance computing. He has been a winner for industry faculty awards from Microsoft/NVIDIA/Xilinx/Alibaba. His work also won multiple recognitions as “Best papers” collection or awards in top forums such as SIGMOD 2008, VLDB 2013 (demo), IEEE/ACM ICCAD 2017, PACT 2018, IEEE TPDS 2019, and FPGA 2021. Since 2010, he has (co-)chaired a number of international conferences and workshops, including IEEE CloudCom 2014/2015, BigData Congress 2018 and ICDCS 2020. He has served in editor board of international journals, including IEEE Transactions on Cloud Computing (IEEE TCC), IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), IEEE Transactions on Knowledge and Data Engineering (TKDE), Springer Journal of Distributed and Parallel Databases (DAPD) and ACM Computing Surveys (CSUR). He is an ACM Distinguished member (class of 2020).

Dr. Eyal de Lara

• Professor and Chair, Department of Computer Science, University of Toronto

Dr. Eyal de Lara was awarded his PhD in Electrical and Computer Engineering from Rice University in 2002. Upon graduation, he joined the University of Toronto as an Assistant Professor in the Department of Computer Science. In 2007, he was awarded tenure and promoted to Associate Professor. In 2015, he was promoted to the rank of Professor. He currently serves as the Chair of the department. Professor de Lara’s research lies in the areas of cloud and mobile computing where he has contributed novel algorithms for system virtualization, edge computing, application scaling, indoor localization, mobile security, and continuous mobile sensing. Professor de Lara’s research has had a significant impact in both academia and industry. His research on VM fork, a new cloud computing abstraction, was commercialized by GridCentric, a Toronto based start-up that was acquired by Google. Professor de Lara’s work has been recognized with the EuroSys Test of Time Award, the CACS/AIC Outstanding Young Computer Science Researcher Prize, an NSERC Discovery Accelerator Award, Faculty Awards from IBM and VMware, as well as 3 best paper awards and 2 best paper honorable mentions. Professor de Lara has served as the editor in chief of GetMobile, the flagship publication of ACM SIGMOBILE, and has co-chaired the technical program committees of several conferences including ACM MobiSys and ACM/IEEE SEC, which are respectively the top venues in mobile systems and edge computing. His contributions to the mobile research community have been recognized with the 2020 SIGMOBILE Distinguished Service Award.


Register Now


We thank our generous sponsors.